Fusion Rate and Superburst Ignition
نویسندگان
چکیده
Observationally inferred superburst ignition depths are shallower than models predict. We address this discrepancy by reexamining the superburst trigger mechanism. We first explore the hypothesis of Kuulkers et al. that exothermic electron captures trigger superbursts. We find that all electron capture reactions are thermally stable in accreting neutron star oceans and thus are not a viable trigger mechanism. Fusion reactions other than 12C + 12C are infeasible as well since the possible reactants either deplete at much shallower depths or have prohibitively large Coulomb barriers. Thus we confirm the proposal of Cumming & Bildsten and Strohmayer & Brown that 12C + 12C triggers superbursts. We then examine the 12C + 12C fusion rate. The reaction crosssection is experimentally unknown at astrophysically relevant energies, but resonances exist in the 12C + 12C system throughout the entire measured energy range. Thus it is likely, and in fact has been predicted, that a resonance exists near the Gamow peak energy Epk ≈ 1.5 MeV. For such a hypothetical 1.5 MeV resonance, we derive both a fiducial value and upper limit to the resonance strength (ωγ)R and find that such a resonance could decrease the theoretically predicted superburst ignition depth by up to a factor of 4; in this case, observationally inferred superburst ignition depths would accord with model predictions for a range of plausible neutron star parameters. Said differently, such a resonance would decrease the temperature required for unstable 12C ignition at a column depth 1012 gcm−2 from 6×108 K to 5×108 K. A resonance at 1.5 MeV would not strongly affect the ignition density of Type Ia supernovae, but it would lower the temperature at which 12C ignites in massive post–main-sequence stars. Determining the existence of a strong resonance in the Gamow window requires measurements of the 12C + 12C cross-section down to a center-of-mass energy near 1.5 MeV, which is within reach of the proposed DUSEL facility. Subject headings: nuclear reactions, nucleosynthesis, abundances — stars: neutron — X-rays: bursts
منابع مشابه
Superburst Ignition and Implications for Neutron Star Interiors
Superbursts are thought to be powered by the unstable ignition of a carbon-enriched layer formed from the burning of accreted hydrogen and helium. As shown by Cumming & Bildsten, the short recurrence time hinges on the crust being sufficiently hot at densities ρ > 109 gcm−3. In this Letter, we self-consistently solve for the flux coming from the deep crust and core. The temperature where the ca...
متن کاملSuperbursts from Strange Stars
Recent models of carbon ignition on accreting neutron stars predict superburst ignition depths that are an order of magnitude larger than observed. We explore a possible solution to this problem, that the compact stars in low mass X-ray binaries that have shown superbursts are in fact strange stars with a crust of normal matter. We calculate the properties of superbursts on strange stars, and t...
متن کاملEnergy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کاملEFFECT OF FUSION REACTION PRODUCTS HEATING ON THE VOLUME IGNITION OF DT AND D3He FUEL PELLETS
Laser fusion simulations are carried out for DT and D- He pellets by using a hydrodynamic code including heating from all charged reaction products and neutrons. It is shown that the inclusion of the side reactions and heating from all reaction products in the fuel pellets have an appreciable effect on the plasma temperature, the ICF drive energy requirement, fusion gain and the ignition c...
متن کاملEnergy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کامل